home *** CD-ROM | disk | FTP | other *** search
- /* Parameters for target machine Hewlett-Packard 9000/300, running bsd.
- Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- * Configuration file for HP9000/300 series machine running
- * University of Utah's 4.3bsd port. This is NOT for HP-UX.
- * Problems to hpbsd-bugs@cs.utah.edu
- */
-
- /* Define this if the C compiler puts an underscore at the front
- of external names before giving them to the linker. */
-
- #define NAMES_HAVE_UNDERSCORE
-
- /* Debugger information will be in DBX format. */
-
- #define READ_DBX_FORMAT
-
- #define TARGET_NBPG 4096
- #define TARGET_UPAGES 3
-
- /* On the HP300, sigtramp is in the u area. Gak! User struct is not
- mapped to the same virtual address in user/kernel address space
- (hence STACK_END_ADDR as opposed to KERNEL_U_ADDR). This tests
- for the whole u area, since we don't necessarily have hp300bsd
- include files around. */
- #define IN_SIGTRAMP(pc, name) \
- ((pc) >= STACK_END_ADDR \
- && (pc) < STACK_END_ADDR + TARGET_UPAGES * TARGET_NBPG \
- )
-
- /* Address of end of stack space. */
-
- #define STACK_END_ADDR 0xfff00000
-
- /* Sequence of bytes for breakpoint instruction. */
-
- #define BREAKPOINT {0x4e, 0x42}
-
-
- /* Things needed for making the inferior call functions. */
-
- /* Push an empty stack frame, to record the current PC, etc. */
-
- #define PUSH_DUMMY_FRAME \
- { register CORE_ADDR sp = read_register (SP_REGNUM); \
- register int regnum; \
- char raw_buffer[12]; \
- sp = push_word (sp, read_register (PC_REGNUM)); \
- sp = push_word (sp, read_register (FP_REGNUM)); \
- write_register (FP_REGNUM, sp); \
- for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
- { read_register_gen (regnum, raw_buffer); \
- sp = push_bytes (sp, raw_buffer, 12); } \
- for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
- sp = push_word (sp, read_register (regnum)); \
- sp = push_word (sp, read_register (PS_REGNUM)); \
- write_register (SP_REGNUM, sp); }
-
- /* Discard from the stack the innermost frame,
- restoring all saved registers. */
-
- #define POP_FRAME \
- { register FRAME frame = get_current_frame (); \
- register CORE_ADDR fp; \
- register int regnum; \
- struct frame_saved_regs fsr; \
- struct frame_info *fi; \
- char raw_buffer[12]; \
- fi = get_frame_info (frame); \
- fp = fi->frame; \
- get_frame_saved_regs (fi, &fsr); \
- for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
- if (fsr.regs[regnum]) \
- { read_memory (fsr.regs[regnum], raw_buffer, 12); \
- write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); }\
- for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
- if (fsr.regs[regnum]) \
- write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
- if (fsr.regs[PS_REGNUM]) \
- write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
- write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
- write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
- write_register (SP_REGNUM, fp + 8); \
- flush_cached_frames (); \
- set_current_frame (create_new_frame (read_register (FP_REGNUM),\
- read_pc ())); }
-
- /* This sequence of words is the instructions
- fmovem 0xff,-(sp)
- moveml 0xfffc,-(sp)
- clrw -(sp)
- movew ccr,-(sp)
- /..* The arguments are pushed at this point by GDB;
- no code is needed in the dummy for this.
- The CALL_DUMMY_START_OFFSET gives the position of
- the following jsr instruction. *../
- jsr @#32323232
- addl #69696969,sp
- trap #2
- nop
- Note this is 28 bytes.
- We actually start executing at the jsr, since the pushing of the
- registers is done by PUSH_DUMMY_FRAME. If this were real code,
- the arguments for the function called by the jsr would be pushed
- between the moveml and the jsr, and we could allow it to execute through.
- But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
- and we cannot allow the moveml to push the registers again lest they be
- taken for the arguments. */
-
- #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e424e71}
-
- #define CALL_DUMMY_LENGTH 28
-
- #define CALL_DUMMY_START_OFFSET 12
-
- /* Insert the specified number of args and function address
- into a call sequence of the above form stored at DUMMYNAME. */
-
- #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
- { *(int *)((char *) dummyname + 20) = nargs * 4; \
- *(int *)((char *) dummyname + 14) = fun; }
-
- #define HAVE_68881
-
- #include "tm-68k.h"
-